4 N

7t Central and Eastern European
Software Engineering Conference
in Russia - CEE-SECR 2011

October 31 — November 3, Moscow

Three Dimensions of Software Analysis:

Performance, Power, Parallelism

Stanislav Bratanov

Intel Corporation

e

Agenda

Evolution of performance analysis methods
Statistical Call Tree Model

Correlated parallel software analysis
Application-centric power analysis

Tools to use

e

Current Technology: Event Based Sampling

* Fetch addresses (IP) correlated with HW events
* Part of Intel® VTune™ for more than a decade

* Reliable, with a good balance between precision and
performance
— Typical overhead of 5%

BR._MISSP_EXEC

BUS_TRANS_BURST.SELF

CPU_CLK_UNHALTED.CORE

CPU_CLK_UNHALTED.REF

CYCLES_L1I_MEM_STALLED
INST_RETIRED. ANY
MEM_LOAD_RETIRED.L2_LINE_MISS

MEM_LOAD_RETIRED.L2_MISS

e

Event Based Sampling: Misleading

About of time
Was it beeping all was consumed by

the time? the OS kernel

I HalMakeBeep

o KiFastCalEntry ntkrnlpa.exe 1493000000 3.9%:
= KiFastsystemCallRet ntdll.dll 1154000000 3.0%:
" KildleLoop ntkrnlpa.exe 538000000 1.6%
I hook_annotation tpsstoal, dll 564000000 1.5%
I RHEnterCriticalSection ntdll.dll 340000000 0.9%
 RtlLeaveCriticalSection ntdll.dll = 295000000

Our code’s Our code (tpsstool) is just

near perfect. Need to
buy a better OS

[11

entheimost popularmethodsare not perfecy

e

Statistical Call Graph: Hardware Agnostic

® Introduced in Intel® PTU, then in Intel® Parallel Amplifier

* Unique in stack quality and performance
— typical overhead under 10%
— but not connected with HW events
— sampling frequency is too low

main -> main ->
FunctionX -> FunctionX ->
FunctionY -> FunctionZ ->
Current IP Current IP

Low
sampling frequencies, no

e

EBS + SCG = A Natural Improvement

* Experimental feature of Intel® VTune™ Amplifier XE
— Employed user-mode SCG technology in kernel mode

— Overhead is just a few % greater than that of EBS

main ->
FunctionX ->

FunctionY ->
Current IP

main ->
FunctionW ->
FunctionV ->
Current IP

BR._MISSP_EXEC
BUS_TRANS_BURST.SELF
CPU_CLK_UNHALTED.CORE
CPU_CLK_UNHALTED.REF

CYCLES_L1I_ MEM_STALLED n
INST_RETIRED. ANY

e S L =N - ;=0 1 0 0 Pl e e

MEM_LOAD_RETIRED.L2_MISS F

main ->
FunctionX ->

FunctionZ ->
Current IP

4 N
Statistical Call Tree Model: A Problem Solver

All OS kernel hotspots are
combined into a single node
(kernel entry)

9x performance
increase after changing
our timing algorithm!

' FKiFastSystemCallRet
+lhook_annotation
#IR tLeaveCriticalSection
[#] R HEnterCriticalSection

=1 & ZwQueryPerformanceCounter
=1 & hook_annotation

QueryPerformanceCounter |+ sal_system_time

The majority of the
hotspots were called on
behalf of our code
(hook_annotation)...

...primarily, to request the
absolute time

IS arstep ronwardin perormanceranalysis

e

o

Parallelism: What’s Going on in the System?

Timestamp
Wall-clock reference
Event counter values

Stack

Timestamp

Wall-clock reference
Event counter values

. Switched out because of:

o

'WaitForSingleObject(Handle) ;

thread O wait time thread 0

sampling intervals

thread 1

Timestamp
Event counter values

sampling intervals

t 1
1Pl Pl active time
v v
~——inactive time——— thread 1

(Quantumend)

Stacks processElement() > getNextltem() - doTheJob ()

per

erformance is what’s within a\

Registers and Memory

“A0 [rax + rbx*2 + 85]”, “[AO + rcx*8]”

qguantum, while parallelism is the

Branches

v 100

. Ew |
=

L=

relative quantum layout and the
reasons and duration of inactivity
=> we can effectively measure

@h at the same time /

Everythinghsiinterconnected

™~

/

e

HW events
(e.g., clocks)

Synchronization f Thread

Primary
hotspot (wait-spot)

hotspot

contention

N

Parallel Metrics on the Tree: Overview

Performance and
parallelism metrics

join_naturall

(ON)
impact

Time lost on
waits

Scheduled

off CPU

A\
Synchronization

v
CPU_CLK_UNH ...

B guantize lines_xrpow
[=] . quantize_lines_xi 3,556,035,917
3,180,425,513
375,610,404

FlKiFastsystemCallRet
F. NtwaitFaorSingleObject < WaitForSingleObjectEx
F. ZwReguestWaitReplyPort < CarClientCallServer
F. ZwSetEvent + SetEvent

/

We lost almost half of
potential performance on

3,089,180,223
2,993,182,443
02,794,255
20,723,639

Major contention on a
WaitForSingleObject

Context Switches ...

contention: clocks wasted on
contention are comparable
with the time of useful work

N— _/

v v
Preemption Context Wait Time by HM\W
Switches by HMW ... Context

233 0
209 0
24 0
244 11,894,526, 703
215 11,317,527,328
15 25,823,520
=] 50,700,216

Its SetEvent counterpart
is not that contended

A4
Inactive Time by
HM Context

57,516,034
51,273,750
0,230,328
444,516,840
435,746,772
451,975
8,319,132

4 N
Fixing Parallel Performance Issues

Primary computation hotspot called in
parallel from an OpenMP region

Function / Call Stack CPU_CLK_UNH... Synchronization

THREAD by H/... ™ Context Switches ...

B Interpolatorkic <unsigned char, float:=::InterpolateM ¥ 585,912 744
=l P Interpolatorkic<unsigned char unsigned char=::Do <+ _kmp_invoke_microtask < _kmpc_invoke

585,912 744 23

I _kmpc_invoke_task_func < _kmp_launch_worker < BaseThreadInitThunk < RtUserThreadSt 523,857,299 23

F. _kmp_fork_call < _kmpc_fork_call + InterpolatorKic<unsigned char,unsigned char =::Do < O 62,015,445]
FHKImage::getData 181,995,760]
EIMtWaitForSingleChject 173,576,490 17,315
F. WaitForSingleObjectEx < _kmp_launch_monitor <+ BaseThreadInitThunk < RilserThreadStart 173,576,490 17,315

@aﬁon: Excessive OMP barriers because of \

processing a picture by blocks of lines and parallelizing
each block separately:

for(i = 0; i < block no; i++)

{

Major contention on a
WaitForSingleObject inside OpenMP that
cost us ~30% of performance loss

(clockticks of the wait / clockticks of the
otspot)

#pragma omp parallel for
for(j = 0; j < lines_in block; j++)
{
/// do processing
} /// implicit barrier causing contention and overhead

)
To do: Use nowait clause or apply parallel_for to the

entire picture and use dynamic work scheduling

- /

e

Fixing Parallel Performance Issues

The relative cost of contention on Sleep() is
low

>~

Function [Call Stack

CPU_CLK_UNHALT .

. izt
THREADI::!_:'HME.T%&\

ElMNtDelayExecution
. SleepEx < _kmp_invoke_microtask < _kmp_wait_vield_4 < _kmp_acquire_|ock|
2 f'-lt'l.-"J'aiﬂ:DrSiruIEDI:nir:n:t

236,505,547
236,509,547
243 806,404 |

=~ WaitForSingleObjectEx 241,934,524 7,541

= _kmp_launch_worker 208,421,435 5,982
F._kmp_wait_sleep + _kmpc_invoke_task_func + _kmp_launch_worker < 85,531,355 3,023

F. _kmp_get_reduce_method + _kmpc_invoke_task_func 120,890,080 2,959

. _kmp_launch_monitor < BaseThreadInitThunk < RiUserThreadStart 22,055,633 1,496

. QThreadStorageData: :finish{void * ptre4 = ptre4) + QMutex::lock(void) 13,457,455 63

F. RtDeMormalizeProcessParams + RiDeMormalizeProcessParams 24
[FHInterpolatorPixel <unsigned char =::Do 15,302, 273

Decreased contention and negative
performance impact (down to ~1%)

by:

using a single parallel_for and
namic work scheduling

he'cost ofparalielismiisiuncovered

-

Power Metrics on the Tree

°*Energy and Power registers:

— we sample them @ context switches and PMIs
—on Intel® micro-architecture code named Sandy Bridge
—to use Coulomb counter on Intel® Atom™ processors later

Energy (Joules) consumed Energy Energy consumed
Call tree by each function/call path consumed by by the entire
on a processor core the graphics processor package
. A’ v ,/
Function / Call Stack Energy Core by Energy GFX by Energy Pack by CPU_CLK_UMHALTED. Synchronization

H/W Context H/W Context H/W Context THREAD by HMW Co... |Context Switches... T
EMtWaitForSingleObject 2,468,224 14,978 2,548,316 173,576,490 17,315
EMtDelayExecution 2,103,696 10,176 2,286,704 111,482,970 5,023

F. SleepEx < kmp_invoke_micratask < _kmp_wa 2,103,696 10,176 2,286,704 111,482,970 5,023
EMtWaitFarMultipleObjects 219,888 1,152 238,000 21,501,501 113
| B Interpolatorkic<unsigned char, float=::Interpolate § 10,379,264 11,038,960

Thread
contention

Execution
time

Oone modeltfits all

/

How Can | Enjoy All This Goodness Today?
itz |_Set AMPLXE_EXPERIMENTAL=1_]

6 Choose Analysis Type . Intel VTune Amplifier X€ 2011

El-=F Algorithm Analysis

""" Identify your most time-consuming source code. Unlike Hotspots, Lightweight Hotspots has lower
----- overhead because it does not collect stack information. It can also be used to sample all processes on
..... '& Concurrency a system, This analysis type uses hardware event:based sampling collection. Press F1 for more

----- A Locks and Waits details.

- Advanced Intel(R) Core(TM) ¥ Collect stacks | =

----- A General Exploration & Detai X i
----- £ Memory Access i Etals
_____ E Bandwidth To modify collector options for a predefined analysis type, right-didk the analysis type in the

; tree, select Copy from Current entry in the pop-up menu, and edit the copy of the selected
""" g iandd'md'd'culﬁrgeakduwn o analysis type configuration. /
----- B es and uOps
BB Adva:ced InteI(R)pMia'uardw Events configured for CPU: I Intel{R) Core{TM) 2 Duo Mobile Processor .
""" A General Exploration MOTE: For analysis purposes, Amplifier ¥E may adjust the Sample After values in the table Sta rt th € COI l ection
----- Iﬁ' Memory Access below by a multiplier. The multiplier depends on the value of the Duration time estimate :
..... A Cydes and uOps option specified in the Project Properties dialog. a nd a Uto matlca | |y get
----- A Front End Investigation - aca Il tree with HW
=& Advanced Intel{R) Microarch Event Name Sample After Event Description .
e “E SE”E“'FE"DETD” = CPU_CLK_UNHALTED.CORE 2000000 Core cydes when core is not halted. events, threadi ng
4 CPU_CLK_UNHALTED,REF 2000000 Reference cydes when core is not halted, efficie n cy an d pOWGF
INST_RETIRED. ANY 2000000 Instructions retired. . .
| e | consumption metrics

Sy to) pickiupiforboth new and existingiuser

e

Summary

Even the most popular methods are not perfect

Event-based call tree is yet another advancement in
software analysis:

it brings to light the software execution logic

helps reveal performance inefficiencies and the cost
of parallelism

correlates performance/power/parallelism metrics
IS a natural extension of existing methods

Available as an experimental feature of Intel® VTune™
Amplifier XE:

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe

/

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14

