
7th Central and Eastern European
Software Engineering Conference
in Russia - CEE-SECR 2011
October 31 – November 3, Moscow

Stanislav Bratanov

Three Dimensions of Software Analysis:
Performance, Power, Parallelism

Intel Corporation

Agenda

 Evolution of performance analysis methods
 Statistical Call Tree Model
 Correlated parallel software analysis
 Application-centric power analysis
 Tools to use

• Fetch addresses (IP) correlated with HW events
• Part of Intel® VTune™ for more than a decade
• Reliable, with a good balance between precision and

performance
– Typical overhead of 5%

Current Technology: Event Based Sampling

Current IPCurrent IP Current IPCurrent IPCurrent IPCurrent IP Current IPCurrent IP Current IPCurrent IP

Interrupt execution whenever a
counter overflows

Interrupt execution whenever a
counter overflows

Event Based Sampling: Misleading

Even the most popular methods are not perfectEven the most popular methods are not perfect

About 80% of time
was consumed by

the OS kernel

About 80% of time
was consumed by

the OS kernel

Our code (tpsstool) is just
1.5%

Our code (tpsstool) is just
1.5%

Conclusion: Our code’s
near perfect. Need to

buy a better OS

Conclusion: Our code’s
near perfect. Need to

buy a better OS

Was it beeping all
the time?

Was it beeping all
the time?

• Introduced in Intel® PTU, then in Intel® Parallel Amplifier
• Unique in stack quality and performance

– typical overhead under 10%
– but not connected with HW events
– sampling frequency is too low

Statistical Call Graph: Hardware Agnostic

main ->
 FunctionX ->
 FunctionY ->
 Current IP

main ->
 FunctionX ->
 FunctionY ->
 Current IP

main ->
 FunctionX ->
 FunctionZ ->
 Current IP

main ->
 FunctionX ->
 FunctionZ ->
 Current IP

What’s in the gap? Low
sampling frequencies, no
correlation with HW events

What’s in the gap? Low
sampling frequencies, no
correlation with HW events

• Experimental feature of Intel® VTune™ Amplifier XE
– Employed user-mode SCG technology in kernel mode
– Overhead is just a few % greater than that of EBS

EBS + SCG = A Natural Improvement

main ->
 FunctionX ->
 FunctionY ->
 Current IP

main ->
 FunctionX ->
 FunctionY ->
 Current IP

main ->
 FunctionX ->
 FunctionZ ->
 Current IP

main ->
 FunctionX ->
 FunctionZ ->
 Current IP

main ->
 FunctionW ->
 FunctionV ->
 Current IP

main ->
 FunctionW ->
 FunctionV ->
 Current IP

…… ……

Statistical Call Tree Model: A Problem Solver
All OS kernel hotspots are

combined into a single node
(kernel entry)

All OS kernel hotspots are
combined into a single node

(kernel entry)

The majority of the
hotspots were called on

behalf of our code
(hook_annotation)…

The majority of the
hotspots were called on

behalf of our code
(hook_annotation)…

…primarily, to request the
absolute time

…primarily, to request the
absolute time

Result: 9x performance
increase after changing
our timing algorithm!

Result: 9x performance
increase after changing
our timing algorithm!

It is a step forward in performance analysisIt is a step forward in performance analysis

Parallelism: What’s Going on in the System?

JNZ

20

JA

100
20

20

RET

20

thread 0 thread 0wait time

sampling intervals

thread 1 thread 1inactive time

sampling intervals

active time

Quantum end

Sync

Timestamp
Wall-clock reference
Event counter values

Stack

Timestamp
Wall-clock reference
Event counter values

Timestamp
Event counter values

processElement() àgetNextItem() àdoTheJob ()Stacks

Branches

Switched out because of :
WaitForSingleObject(Handle);

“A0 [rax + rbx*2 + 85]”, “[A0 + rcx*8]”Registers and Memory

IPIIPI

Performance is what’s within a
quantum, while parallelism is the
relative quantum layout and the
reasons and duration of inactivity
=> we can effectively measure
both at the same time

Everything is interconnectedEverything is interconnected

• Performance and
parallelism metrics
join naturally

– See next slide for the actual example

Parallel Metrics on the Tree: Overview

Primary
hotspot

Synchronization
hotspot (wait-spot)

HW events
(e.g., clocks)

Thread
contention

OS
impact

Time lost on
waits

Scheduled
off CPU

Major contention on a
WaitForSingleObject

Its SetEvent counterpart
is not that contended

We lost almost half of
potential performance on
contention: clocks wasted on
contention are comparable
with the time of useful work

Fixing Parallel Performance Issues
Primary computation hotspot called in
parallel from an OpenMP region

Major contention on a
WaitForSingleObject inside OpenMP that
cost us ~30% of performance loss
(clockticks of the wait / clockticks of the
hotspot)

Explanation: Excessive OMP barriers because of
processing a picture by blocks of lines and parallelizing
each block separately:
for(i = 0; i < block_no; i++)
{
 #pragma omp parallel for
 for(j = 0; j < lines_in_block; j++)
 {
 /// do processing
 } /// implicit barrier causing contention and overhead
}
To do: Use nowait clause or apply parallel_for to the
entire picture and use dynamic work scheduling

Fixing Parallel Performance Issues

Decreased contention and negative
performance impact (down to ~1%)
by:
using a single parallel_for and
dynamic work scheduling

The relative cost of contention on Sleep() is
low

The cost of parallelism is uncoveredThe cost of parallelism is uncovered

One model fits allOne model fits all

•Energy and Power registers:
– we sample them @ context switches and PMIs

–on Intel® micro-architecture code named Sandy Bridge
–to use Coulomb counter on Intel® Atom™ processors later

Power Metrics on the Tree

Call tree

Energy (Joules) consumed
by each function/call path

on a processor core

Energy
consumed by
the graphics

Energy consumed
by the entire

processor package

Execution
time

Thread
contention

How Can I Enjoy All This Goodness Today?

Choose an analysis
type

Start the collection
and automatically get
a call tree with HW
events, threading
efficiency and power
consumption metrics

Check this
box

Set AMPLXE_EXPERIMENTAL=1

Easy to pick up for both new and existing usersEasy to pick up for both new and existing users

• Even the most popular methods are not perfect
• Event-based call tree is yet another advancement in

software analysis:
• it brings to light the software execution logic
• helps reveal performance inefficiencies and the cost

of parallelism
• correlates performance/power/parallelism metrics
• is a natural extension of existing methods

• Available as an experimental feature of Intel® VTune™
Amplifier XE:
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe

Summary

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14

