Q)ElGASPABES

WRITE ONCE.
SCALE ANYWHERE.

GigaSpaces Technologies

Mickey Alon

* SQL

— What it is and isn’t good for
* NoSQL

— Motivation & Main Concepts of Modern Distributed Data Stores

— Common interaction models
* Key/Value, Column, Document

* NOT consistency and distribution algorithms

* One Data Store, Multiple APIs

— (Really) brief intro to GigaSpaces
— SQL challenges: Add-hoc querying, Relationships (JPA)

QE‘:IEAS PACES ® Copyri

A Few (more) Words About SQL

, (Usually) Centralized
9

. Transactional, consistent
, Hard to Scale

_ Disk Based

QE‘:IEAS PACES ® Copyri

Static, normalized
data schema

* Don’t duplicate, use FKs

title_id

authaor
—author_id INT{11
first_name VARCHAR(20)
last_name VARCHAR(30)
INTI11)

obituary

barth_date

obituary_text

® Copyrij

DATE

deceased_date DATE

TEXT

author_id INTi11

sale_id INT(11)

INTOD
VARCHAR(L00)
INT{11)
ipublisher_id INT(11)
«category_id INT{11)

name VARCHAR{1000
start_date DATE

end_date DATE

discount FLOAT(12)

title_id
name
author_id

Y_*

sale_title_xref

sale_id INT(11}
tithe_id INT(11)

publisher
publisher_id INT(11
name VARCHAR(100)
sales_contact VARCHAR(100)

category

category_id INT{11)

descrption VARCHAR(100)

Add hoc query support
- Model first, query later

select users.user id, users.email, count(*), max(classified ads.posted)
from users, classified ads

where users.user id = classified ads.user id

group by users.user id, users.email

order by upper({users.email):;

QEIEAS PACES ® Copyri

Standard
- Well known

- Rich ecosystem

(Brief) NOSql Recap

onSQL

NoSqgl (or a Naive Attempt to Define It)

A loosely coupled collection
of

non-relational multiple data |
stores Q.

NoSQL — some key concepts

* Takes care of data-scaling
* Distributed by nature (mostly)
* Can scale up-to thousands of nodes

* Complements SQL — not replacing it

Few words about scaling

scala bl e (Up & Out)

/!\ ww CPU speed/Cores

What are the options?

* Hardware based
— Use extreme hardware such as RAC - 99,999% uptime
— Non intrusive — minimal change

— Can you afford it? How far does it scale?

* Software (NoSQL) based on commodity HW

— Failures are more likely to happen (due to number of nodas)
— Design for failure scenarios \\
* Putting data in multiple nodes
* Client support for transparent failover

— Eventually consistent (CAP theorem)

QEIEAS PACES ® Copyri

The Big Data Era

* Exponential Increase in data & throughput

— We generate increasingly growing amount content
— Data is being pushed to consumers
— Caching ?

* Software is delivered as service

— 24/7 + schema evolution + agility = leading constraints ?

* Competition is growing while price decrease

QEIEAS PACES ® Copyri

The Current Leading Data Models

Key / Value

Column

® Copyrij

Document

{

!

}

\\namelf . Ilurill

- 4
“ssn”:7213445",
“hobbies”: [”..”," .

N . {
N wrorroomr

}

."] ,

|
{
I coo J
}
L
{
I coo J
}

* Have the key? Get the value

— That’s about it when it comes to querying
— Map/Reduce (sometimes)

— Good for

* cache aside (e.g. Hibernate 2nd level cache)

* Simple, id based interactions (e.g. user profiles)

* In most cases, values are Opaque

QE‘:IEAS PACES ® Copyri

K1 V1
K2 V2
K3 V3

K4 V1

Scaling out is relatively easy
(just hash the keys)

* Some will do that automatically for you

* Fixed vs. consistent hashing

tem| | Hitem |

|
=

9
]:U —t{item| }—fiten] |

QEIEAS PACES ® Copyri

- B
, sriak , iﬁl
* Implementations: Redis
— Memcached, Redis, Riak

— In memory data grids (mostly Java-based) started this way

* GigaSpaces, Oracle Coherence, WebSphere XS,

JBoss Infinispan, etc.

QEIEASPAEEE ORACLE

Coherence

GEM “$= Infinispon

QE‘:IEAS PACES ® Copyri

Column Based

j‘li"
tramazon
" webservices"

SimpleDB

wc.assandra

® Copyrij

Column Based

* Google’s BigTable / Amazon Dynamo

* One giant table of rows and columns

— Column == pair (name and a value, sometimes timestamp)

— Each row can have a different number of

columns = flexible schema
Table ->* Rows ->* Columns ->* Values

QE‘:IEAS PACES ® Copyri

Better query support

* Query on row key

— Or column value (aka secondary index)

* Good for a constantly changing, |~
(albeit flat) domain model

* Can joins and relations be e
replaced by map/reduce?

QE‘:IEAS PACES ® Copyri

Think JSON

‘ mongoDB

(or BSON, or XML)

..MarkL{)giC“

“‘name” : “Lady Gaga”,
“ssn”:7213445",
“hobbies”: [“Dressing up”,“Singing”],
“albums”:
[{"'name” : "The fame”
“release year”:72008"},
{"name” :”Born this way”
“release year”:72011"}]

relax

.
Couch DB J
=

® Copyrij

22

~* Built-in support for hierarchal model

— Arrays, nested documents

Great power comes with great
responsibility!

— normally comes with restful and map/reduce API

* Flexible srhema
> db.people.find({age: {$gt: 27}})

{ "_1d" : Objectld("4bed8®bl0@b4acd®/0c593bac"), "name" : "John", “age" : 28 }
{ "_1d" : Objectld("4bed8@bb@b4acd®/0c593bad"), "name" : "Steve", "age" : 29 }

QEIEAS PACES ® Copyri

| What if you
didn’t have to choose?

O

W

(@
FZ/ 1

A Brief Intro to GigaSpaces

I Memory Data Grid

* With optional write behind to
a secondary storage

o5
PN
600 . .
I~ write-behind
A
> /I\WCassandra
Map/Reduce Y ===
o)

QEIEAS PACES ® Copyri

Multiple API

A Brief Intro to GigaSpaces

Transparent partitioning & HA

* Fixed hashing based on a chosen
property

O o _ Ropicaton _ csion _
J
AT AL TN A A A R

Backup 1 Primary 1 Primar y 2 Backup 2

=1
©

% I t)

JAVA Virtual Machine JAVA Virtual Machine JAVA Virtual Machine JAVA Virtual Machine

QEIEAS PACES ® Copyri

A Brief Intro to GigaSpaces

Transactional (Like, ACID)
* Local (single partition)
* Distributed (multiple partitions)

* Durability via memory replication

ETransactional
public wold updateFoo(Foo foo) {
ff do something

QEIEAS PACES ® Copyri

Use the Right API for the Job

* Even for the same data...
— POJO & JPA for Java apps with complex domain model
— Document for a more dynamic view

— Memcached for simple, language neutral

data access

— JDBC for:

* Interaction with legacy apps

* Flexible ad-hoc querying (e.g. projections)

QEIEAS PACES ® Copyri

Memcached (the Daemon is in the Details)

* Beware of Network saturation — save
network calls!

* Extend memcache API with business
logic

Memcache- iﬁ

a Il
AP &

QEIEAS PACES ® Copyri

SL/JDBC — Query Them All

Query may involve Map/Reduce

* Reduce phase includes merging and sorting

SL/JDBC — Things to Consider

* Unique and FK constraints are not practically
inforceable

* Sorting and aggregation may be expensive

* Distributed transactions are evil

— Stay local...

* One APl doesn’t fit all
— Use the right API for the job

* Know the tradeoffs

— Always ask what you’re giving up, not just what you’re

gaining

QE‘:IEAS PACES ® Copyri

Thank YOU!

@mickey alon
http://blog.gigaspaces.com

	Yes, SQL!
	Страница 2
	Agenda
	A Few (more) Words About SQL
	SQL
	SQL
	SQL
	SQL
	(Brief) NOSql Recap
	NoSql (or a Naive Attempt to Define It)
	NoSQL – some key concepts
	Few words about scaling
	What are the options?
	Why Now?
	The Current Leading Data Models
	Key/Value
	Key/Value
	Key/Value
	Column Based
	Column Based
	Better query support
	Document
	Document
	Страница 24
	A Brief Intro to GigaSpaces
	A Brief Intro to GigaSpaces
	A Brief Intro to GigaSpaces
	Use the Right API for the Job
	Memcached (the Daemon is in the Details)
	SQL/JDBC – Query Them All
	SQL/JDBC – Things to Consider
	Summary
	Thank YOU! @mickey_alon http://blog.gigaspaces.com

