
Trends in Parallel and
Heterogeneous Programming

Robert Geva
Parallel Programming Language

Architect
robert.geva@intel.com

Main Topics

Parallelism at
multiple levels

Implicit
parallelism

Heterogeneous
programming

Composeable
task parallelism

Multi core everywhere

SIMD Instructions Compute
Multiple Operations per

Instruction

4

256b Intel® Advanced Vector Extensions (Intel® AVX)

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0127
X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

128255

Intel® microarchitecture codename Sandy Bridge
256-bit Multiply + 256-bit ADD + 256-bit Load per clock…

Double your FLOPs with great energy-efficiency

55

Programmer Personalities

Different programmers
want different levels of
control over how their

program executes

Static scheduling, Monolithic design,
OpenMP

T0 T1 T2 T3

7

OpenMP is good for monolithic applications:

A SW architect needs to break the application
work into chunks,
determine which thread does what work,
and worry about making the threads do equal
amount of work.

This model provides good performance when it
works, but some applications are too complex
for a single person to design with a global view.

OpenMP is hard to use when the application is
composed of libraries, or of independently
developed modules.

Work-stealing Task Scheduler

8

Each processor has a work queue of spawned tasks

spawn

spawn
spawn
spawn
spawn

P

spawn
spawn

P

spawn
spawn
spawn
spawn

P

spawn
spawn

P

spawn
Spawn!

When a worker hits a spawn, it posts a work item it its
own work dequeue, not on another core’s

Each core has it’s own dequeue
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

Work-stealing Task Scheduler

9

Each processor has a work queue of spawned tasks

spawn
spawn
spawn
spawn

P

spawn
spawn

P

spawn
spawn
spawn
spawn

P

spawn
spawn
spawn

P

spawn
spawn Spawn! Spawn!

spawn
spawn

Spawn!

Each processor places spawned work items on its own
dequeue

Multiple Spawns at the same time with no synchronization
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

Work-stealing Task Scheduler

10

Each processor has a work queue of spawned tasks

spawn
spawn
spawn
spawn

P

spawn
spawn

P

spawn
spawn
spawn
spawn

P

spawn
spawn
spawn

P

spawn
spawn

spawn
spawn
spawn

Spawn!Return!

Upon completion of a work item, the processors pops a
work item from its own dequeue

Compiler support reduces the cost of tasking
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

Work-stealing Task Scheduler

11

Each processor has a work queue of spawned tasks

spawn
spawn
spawn
spawn

P

spawn

P

spawn
spawn
spawn
spawn

P

spawn
spawn
spawn

P

spawn
spawn

spawn
spawn

Return! spawn

When each processor has work to do, a spawn is
roughly the cost of a function call.

Compiler support reduces the cost of tasking
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

Work-stealing Task Scheduler

12

Each processor has a work queue of spawned tasks

spawn
spawn
spawn
spawn

P P

spawn
spawn
spawn
spawn

P

spawn
spawn
spawn

P

spawn
spawn

spawn
spawn

Steal! spawn

When a processor has no work, it steals from another
processor.

Work-stealing delivers load balancing
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

Work-stealing Task Scheduler

13

Each processor has a work queue of spawned tasks

spawn
spawn
spawn
spawn

P P

spawn
spawn
spawn
spawn

P

spawn
spawn
spawn

P

spawn
spawn

spawn
spawn

Spawn! spawn

spawn

With sufficient parallelism, the steals are rare, and we
get linear speedup (ignoring memory effects)

Work-stealing delivers load balancing
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

Work Stealing Delivers Load
Balancing

1. Each worker has its own work queue
2. Workers spawn work items on their own queues
3. Upon completion of work, they pop from their own

queues
4. When a worker has no work, it steals from

another workers
5. No syntax for the application to interfere with the

dynamic scheduler
6. Scheduling works independent of program

structure, across components, libraries, plus ins

Work-stealing delivers load balancing

Main Topics

Parallelism at
multiple levels

Implicit
parallelism

Heterogeneous
programming

Composeable
task parallelism

Parallelism at All levels:
A Three Layer Cake

16

Message Driven

MPI, tbb::flow

SIMD

Array Notations, Elemental functions

Fork-Join

OpenMP, TBB, or Cilk

Need to be cache efficient

Elemental Functions
__declspec (vector) double option_price_call_black_scholes(

double S, // spot (underlying) price
double K, // strike (exercise) price,
double r, // interest rate
double sigma, // volatility
double time) // time to maturity

{
double time_sqrt = sqrt(time);
double d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;
double d2 = d1-(sigma*time_sqrt);
return S*N(d1) - K*exp(-r*time)*N(d2);

}

// invoke calculations for call-options
Cilk_for (int i=0; i<NUM_OPTIONS; i++) {

call[i] = option_price_call_black_scholes(S[i], K[i], r, sigma, time[i]);
}

Use a function
to describe the
operation on a
single element

Invoke the function in a data parallel context

The compiler generates a vector version of the function:
Takes a vector of arguments instead of a single one
Operates on all of them
Vectorized the operation across them
Each “vector lane” performs one operations of the function
Can yield a vector of results as fast as a single result

The added value

Parallelizing Matrix Multiplication

cilk_for (int i=0; i<n; i++) {
cilk_for (int j = 0; j < n; j++) {

for (int k = 0; k < n; k++) {
C[i*n+j] += A[i*n+k] * B[k*n+j];

}
}

}

C+= A*B

Parallelize the loop – not cache efficient

Matrix multiplication using divide and conquer

A11 A12 B11 B12 A11*B11+A12*B21 , A11*B12+A21*B22
* =

A21 A22 B21 B22 A21*B11+A22*B21 , A21*B12+A22*B22

The identity leads to a recursive implementation that
subdivides the matrix into quadrants
Cilk spawn is a natural way to parallelize recursion

C11 C12

C21 C22

A11 A12

A21 A22
B11 B12

B21 B22

Quadrants are reused  cache efficiency
But recursion is harder to write

Main Topics

Parallelism at
multiple levels

Implicit
parallelism

Heterogeneous
programming

Composeable
task parallelism

Abstractions: TBB Pipeline
Special support for a design pattern: useful when some
operations can be done in parallel, others are required
to be serial
Example: read input text, square the numbers, write
output text

21

void RunPipeline(int ntoken, FILE* input_file, FILE* output_file) {
tbb::parallel_pipeline(

ntoken,
tbb::make_filter<void,TextSlice*>(

tbb::filter::serial_in_order, MyInputFunc(input_file))
&
tbb::make_filter<TextSlice*,TextSlice*>(

tbb::filter::parallel, MyTransformFunc())
&
tbb::make_filter<TextSlice*,void>(

tbb::filter::serial_in_order,
MyOutputFunc(output_file)));

Provide a Specification  Get a Parallel Program

MIT Pochoir: Language for stencils

stencil {
dimension: size of the grid
shape: which neighbors are accessed
array: the grid
kernel: function
boundary: function
initialization: function

}

•Pochoir is a C++ based language for stencils
•The programmer write the kernel, the data structure, the access pattern
•The Pochoir compiler generate parallel, recursive, cache oblivious optimal code

Intel Confidential 23

UC Berkeley SEJITS
• Selective embedded just in time specializers
• The programmer writes in Python (efficiency language)
• Uses classes provided by the SEJITS system
• Simple code, don’t worry about parallelism and

performance
• A specializer is designed to work on a specific patterns
• UBC observed 50+ parallel patters used in applications
• The system

– reads the efficiency language (Python) program
– generates code in lower, performance language.
– These are C/C++ using Cilk or OMP, or CUDA.

Write simple code  get a high Write simple code  get a high
performance parallel code

Main Topics

Parallelism at
multiple levels

Implicit
parallelism

Heterogeneous
programming

Composeable
task parallelism

Data parallel heterogeneity: GPU and MIC

Similarities
• All HW dedicated to

compute
• Fast GDDR memory
• Two distinct physical

memories,
connected via PCIe

• Many execution units

Differences
• Hide memory

latency via cache
vs. task switching

• Programming via
C/FTN extensions
vs. CUDA, OCL

• SW threading /
tasking vs. threads
in HW

• Offload anything vs.
offload kernels

GPU: offload kernels. MIC: Offload anything

Heterogeneous Programming with
Intel MIC

MKL*
TBB

C++/FTN
Cilk Plus

OpenMP
TBB

C++/FTN
Cilk Plus

MKL

LEO

Programming MIC is the same as
programming a CPU

OpenMP

PCIeW

indow
s

D

X W

D

D

M

P
C

Ie D

river

CPU Executable MIC Native
Executable

Heterogeneous
Compute

Parallel

C

om

pute

Parallel

C

om

pute

Utilities

Processor Graphics

27

Heterogeneous parallelism thru kernels or similar mechanisms
Improvements in HW drive improvements in ease of programming

Summary

Parallelism at
multiple levels

Implicit
parallelism

Heterogeneous
programming

Composeable
task parallelismEvolving QuicklyEvolving Quickly

Building critical massBuilding critical mass

Multiple productsMultiple products

Integration improvingIntegration improving

Intel® Parallel Building Blocks
Tools to optimize app performance for the latest platform features

30

Intel® Cilk Plus

Language extensions to
simplify data, task, and
vector parallelism

Intel® Threading
Building Blocks

Widely used C++
template library for data
and task parallelism

Intel® Array Building
Blocks

Sophisticated C++ library
for data and vector
parallelism

Mix and Match to Optimize Your Applications' Performance

Compatible with Microsoft* Visual Studio* and GCC
Supports multiple operating systems and platforms

The best solution for parallel programming

Optimization Notice

31

