Trends in Parallel and
Heterogeneous Programming

Robert Geva

Parallel Programming Language
Architect
robert.geva@intel.com

Main Topics D)

Parallelism at Implicit
multiple levels parallelism

\

Heterogeneous <:
programming

N\

._.]liﬁ-'-"':
|.'r'-|l _ﬁ?ﬁr
= ol e tE.

? =

PJ.-,".".;-_T:: i -
Developers g, 7 .. Rock your code.

N

Intel Architecture Spans The Compute Contlnuum
‘ F fL

gl

ff"fﬂ . Servers / Cloud "h"

Desktops Laptops Netbooks Personal Devices Smartphones Smart TVs

Intel Architecture
Multi core everywhere Qﬂ_@

SIMD Instructions Compute
Multiple Operations per (intel)
Instruction

255 128 127

W Vi Vi VM Vv ¥ V¥ Vi
Frrppa .

256b Intel” Advanced Vector Extensions (Intel® AVX)

Intel® microarchitecture codename Sandy Bridge
256-bit Multiply + 256-bit ADD + 256-bit Load per clock...
Double your FLOPs with great energy-efficiency |

. Developers . Rock your code.

Intel® Core™ 17-980X Processor Die Map
32nm Westmere High-k + Metal Gate Transistors

e == L] = F

Memory Controller

- b..' Erew wuss 3!:__5_ T o |:;:: e 331 EIEH RIER maa 22 1ed mes mm)

:Shared L3 Cache** z = |

“ThEE

o ".‘-FF ol ﬁ::t-l'n w gy b | : ﬂﬂ‘mr;‘ ey fommm | §ESE S153 SIEW E:ER
.i':i“ J'----__i' l -r. . --'T’;“ . -: .‘ﬁ .'.-.- .P---llll

EEEE EEEE S weew

Transistor count 1.17B Die size: 248mm?2

** 12MB of cache is shared across all 6 cores I D F201 0

Developers

Different programmers

want different levels of

control over how their
program executes

REAL Programmers code in EINARY.

. Rock your code.

Static scheduling, Monolithic design,

OpenMP

OpenMP is good for monolithic applications:

A SW architect needs to break the application
work into chunks,

determine which thread does what work,

and worry about making the threads do equal
amount of work.

This model provides good performance when it

works, but some applications are too complex
for a single person to design with a global view.

OpenMP is hard to use when the application is
composed of libraries, or of independently
developed modules.

Developers

(intel,

When a worker hits a spawn, it posts a work item it its
own work dequeue, not on another core’s

.:_|_.'|"|- =

i

8 Adapted om opyrighted originals developed by Charles E. Leiserson.of MIT.

Each processor has a work queue of spawned tasks

Work-stealing Task Scheduler@

Each processor places spawned work items on its own
dequeue

Multiple Spawns at the same time with no synchronization

Adapted o opy.ri'ghted originals developed by Charles E. Leiserson.of MIT.

Work-stealing Task Scheduler@

Each processor has a work queue of spawned tasks

Upon completion of a work item, the processors pops a
work item from its own dequeue

10 Adptd o pyghtd riginals developed by Charles E. Lei of MIT.

When each processor has work to do, a spawn is
roughly the cost of a function call.

“I "-_I.!-'r"' ki3
ot W
___ your code.

1 1 Adapted 7 opyrighted originals developed by Charles E. Leiserson.of MIT.

Work-stealing Task Scheduler@

Each processor has a work queue of spawned tasks

When a processor has no work, it steals from another
processor.

Ll T —
12 Adapted

copyrighted originals developed by Charles E. Leisersonof MIT.

Work-stealing Task Scheduler@

Each processor has a work queue of spawned tasks

With sufficient parallelism, the steals are rare, and we
get linear speedup (ignoring memory effects)

1 it

copyrighted originals developed by Charles E. Leisersonof MIT.

Work Stealing Deli L
or S ealing Delivers Load)
Balancing

1. Each worker has its own work queue
2. Workers spawn work items on their own queues

3. Upon completion of work, they pop from their own
queues

4. When a worker has no work, it steals from
another workers

S. No syntax for the application to interfere with the
dynamic scheduler

6. Scheduling works independent of program
structure, across components, libraries, plus ins

Work-stealing delivers load balancing

Main Topics D)

Parallelism at Implicit
multiple levels parallelism

—
\
N

Heterogeneous
programming

N

._.]liﬁ-'-"':
|.'r'-|l _ﬁ?ﬁr
= ol e tE.

? =

PJ.-,".".;-_T:: i -
Developers g, 7 .. Rock your code.

Parallelism at All levels:
A Three Layer Cake

Message Driven

MPI, tbb::flow

AN

Fork-Join

OpenMP, TBB, or Cilk

Developers

Need to be cache efficient

SIMD

Array Notations, Elemental functions

mr
W

. Rock your code.

Ll

Elemental Functions

(vector) double option price call black scholes(

Use a function double // spot (underlying) price
to describe the double // strike (exercise) price,
. double // interest rate
operation on a double si // volatility
Ksingle element / double ti // time to maturity

double time_sqrt = sqrt(time);

double d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time sqrt;
double d2 = dl1-(sigma*time_sqrt);

return S*N(dl) - K*exp(-r*time)*N(d2);

Invoke the function in a data parallel context

// invoke calculations for call-options
Cilk_for (int i=@; i<NUM_OPTIONS; i++) {

call[i] = option_price_call black_scholes(S[i], K[i], r, sigma, time[i]);

}

[The added value J/The compiler generates a vector version of the function: \
Takes a vector of arguments instead of a single one
Operates on all of them

Vectorized the operation across them

Each “vector lane” performs one operations of the function
KCan yield a vector of results as fast as a single result)

Developers

F;f

Parallelizing Matrix Multiplicatm@

cilk _for (int i=0; i<n; i++) {
cilk for (int j = 0; j < n; j
for (int k = 0; k < n; k+
C[i*n+j] += A[i*n+k]

}
}

¥

@ Parallelize the loop — not cache efficient

Matrix multiplication using divide and conquer

(intel)
@m0 mom

A1l Al2 B11 B12 A11*B11+A12*B21 , A11*B12+A21*B22
*

A21 A22 B21 B22 A21*B11+A22*B21 , A21*B12+A22*B22

The identity leads to a recursive implementation that
subdivides the matrix into quadrants

Cilk spawn is a natural way to parallelize recursion

¥ Quadrants are reused = cache efficiency
But recursion is harder to write

Main Topics =D

(inte
Parallelism at Implicit -
multiple levels parallelism

\

N

Heterogeneous
programming

._.]liﬁ-'-"':
|.'r'-|l _ﬁ?ﬁr
= ol e tE.

? =

PJ.-,".".;-_T:: i -
Developers g, 7 .. Rock your code.

Abstractions: TBB Pipeline

Special support for a design pattern: useful when sd]n-e)
operations can be done in parallel, others are required
to be serial

Example: read input text, square the numbers, write
output text

void RunPipeline(int ntoken, FILE* input file, FILE* output file) {
tbb::parallel pipeline(
ntoken,
tbb: :make filter<void,TextSlice*>(
tbb::filter::serial in order, MyInputFunc(input_file))
&
tbb::make filter<TextSlice*,TextSlice*>(

tbb::filter::parallel, MyTransformFunc())

&
tbb::make filter<TextSlice*,void>(
tbb::filter::serial in _order,
MyOutputFunc(output file)));

MIT Pochoir: Language for stencils

e e L L R e L e
[[y ——————)

stencil { gl
dimension: size of the grid sl e MY vorrr——
shape: which neighbors are accessed
array: the grid
kernel: function
boundary: function
initialization: function

*Pochoir is a C++ based language for stencils
*The programmer write the kernel, the data structure, the access pattern
*The Pochoir compiler generate parallel, recursive, cache oblivious optimal code

Developers it Rock your code.

UC Berkeley SEJITS (intel

Selective embedded just in time specializers
The programmer writes in Python (efficiency language)
Uses classes provided by the SEJITS system

Simple code, don’t worry about parallelism and
performance

A specializer is designed to work on a specific patterns

UBC observed 50+ parallel patters used in applications

The system

— reads the efficiency language (Python) program
— generates code in lower, performance language.
— These are C/C++ using Cilk or OMP or CUDA.
It e yential CharSets ﬂ'r&J'EElr Iq

Write simple code = get a high
oerformance parallel code

Main Topics D)

Parallelism at Implicit
multiple levels parallelism

\

A
—

Heterogeneous
programming

N

._.]liﬁ-'-"':
|.'r'-|l _ﬁ?ﬁr
= ol e tE.

? =

PJ.-,".".;-_T:: i -
Developers g, 7 .. Rock your code.

Data parallel heterogeneity: GPU and MI,(:j
intel.

|
Similarities Differences

» All HW dedicated to ' glé:leeng;e\?iwaory

compute vs. task switching
« Fast GDDR memory * Programming via

« Two distinct physical vs. CUDA, OCL
memories,

: vS. threads
connected via PCle in HW

 Many execution units VS.
offload kernels

"y ;
=

. offload kernels. : oad anything

[Ll
al lrz"il‘]l'l'

Heterogeneous Programming with
Intel MIC

MKL*

CPU Executable | '

TBB

OpenMP

Cilk Plus

LEO

MIC Native
Executable

intel.

MKL

TBB

OpenMP

Cilk Plus

Utilities

C++/FTN

0= 1= i A - - < o8« |
Eﬁ@lEﬂ@ﬂ@l@ﬂ@l@ﬂ@ﬂ@l
o AR AR EEEEINERAL IR
i

Programming MIC is the same as

programming a CPU

Processor Graphics

206 KB 12 206 KB 12
(9 LK) (9 CLK)

Saniy Bridge
Integrated | Gore #£1 | Core #2 System

Iir'auhi[: -32KLID BELK | - Hyperthreading Agent

- AVX Ext - AES Instructions [Northbridge)
I:["'E - 2660 Vectors - UMX Unrestricted

- i Dperands - 20 mm®/ Core

@ 10- 14 GHz : I::dlf 20
(L3 conneced] Shared 8 MB L3 Cache -pCl

(256 b/cycle Ring Architecture - 23 LK)

o IMC (DD 16002515 68/ 2l Channel s |
intel “Sandy Bridge™ (SNB] / Mainstream Quad-Core

32 nm Process / ~225 mnv’ Die Size / 85W TDP / AD Stepping / Tape Out : WW23103
Expected : T @ 3.0 - 3.80T] Gz

W hicy uential CharSet=Chargas o

Heterogeneous parallelism thru kernels or similar mechanisms
Improvements in HW drive improvements in ease of programming

Summary

Integration improving Para.IIellsm el Imphqt Building critical mass
multiple levels parallelism

\

Heterogeneous
- programming

N

._.]liﬁ-'-"':
|.'r'-|l _ﬁ?ﬁr
= g tE.

s N

PJ.-,".".;-_T:: i -
Developers g, 7 .. Rock your code.

)

Sit(dens

Developers

intel

Sponsors of Tomorrow.™

ety
5 s "?l'..l'l“:'.a'r
e - '*'-"Er,\-_-a ’ "

... Rock your code.

I DLAEET

Tools to optimize app performance for the latest platform feat

)

Intel® Parallel Building BlocksteD

Compatible with Microsoft* Visual Studio* and GCC
Supports multiple operating systems and platforms

The best solution for parallel programming

Sit(dens

!..-!_:_-. . ’ ._" .
— iy, ,?UE,&?#
, Developers s Py o 0 Mi e o ~. Rock your code.

el
Tl

" n e

Optimization Notice

Intel® Parallel Composer 2011 includes compiler aptions that optimize for instruction sets that are
awvailable in both Intel® and non-Intel microprocessars (for example SIMD instruction sets), but do not
optimize equally for non-Intel microprocessars. In addition, certain compiler options for Intel® Parallel
Composer 2011 are reserved for Intel microprocessaors. Far a detailed description of these compiler
aoptions, including the instruction sets they implicate, please refer to "Intel® Parallel Composer 2011
Documentation > Intel® C++ Compiler 12.0 User and Reference Guides = Compiler Options." Many library
routines that are part of Inteli® Parallel Composer 2011 are more highly optimized for Intel
microprocessors than for ather microprocessaors, While the compilers and libraries in Intel® Parallel
Composer 2011 offer optimizations for both Intel and Intel-campatible microprocessors, depending on
the aptions you select, your code and other factors, you likely will get extra performance on Intel
MICrOprocessars,

While the paragraph above describes the basic optimization approach for Inteli® Parallel Composer 2011,
with respect to Intel's compilers and associated libraries as a whale, Intel® Parallel Composer 2011 may
ar may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessars. These optimizations include Intel® Streaming SIMD Extensions 2
{Intel® SSEZ2), Intel® Streaming SIMD Extensions 3 {Intel® S5E3%, and Supplemental Streaming SIMD
Extensions 3 (Intel® S55E3) instruction sets and other optimizations. Intel does not guarantee the
awvailability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
miCroprocessors.,

Intel recommends that you evaluate other compilers to determine which best meet your requirements,

W
Developers e Rock your code.

P

31

