
Experiences from model-based GUI testing

in smartphone camera and messaging

development

Mika Katara

Department of Software Systems

Tampere University of Technology

Finland

mika.katara@tut.fi

Special thanks to the former TEMA team at Tampere University of Technology:

Henri Heiskanen, Antti Jääskeläinen, Mika Maunumaa, Mika Mäenpää, Antti

Nieminen, Tuomas Pajunen, Tommi Takala, and Heikki Virtanen

Rupesh Dev

Prove Expertise

Finland

rupesh.dev@prove.fi

www.prove.fi

What are We Looking For?

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Bugs that affect smartphone users, i.e. almost everybody

How?

On-line model based testing using models describing what the user

can do with the GUI and how the apps interact

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Online vs. Off-line Testing

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

On - line ?

Generate

Test Suite

Execute

Test Suite

Evaluate

Test Results

No

Select Next

Test Step

Execute Step on

Model & SUT

Evaluate

Result

Objectives

Achieved ?

Report

Results

Yes

No

Test

Behaviour

Test

Objectives

Yes

Adapted from: Alan Hartman, Mika Katara, and Sergey Olvovsky. Choosing a Test Modeling Language:

a Survey. In Proceedings of the Haifa Verification Conference 2006, IBM Haifa Labs, Haifa, Israel,

October 2006. Number 4383 in Lecture Notes in Computer Science, pages 204-218. Springer 2007.

Obstacles and Opportunities for MBT

Practitioners are willing to try out new tools that might help them

Wide variety of open-source testing tools already used (agile unit

testing, continuous integration, etc.)

Practitioners are not willing to invest heavily on modeling or

specification in general

When quality is not a prime consideration, conventional testing

methods seem to work reasonably well

There are areas that are very hard to test using conventional

methods (static and linear test cases)

Many applications running concurrently and sharing resources may

suggest concurrency problems

Protecting the brand: End users who experience application hang-

up/crashing problems etc. may post their bad experiences to the

Internet

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

TEMA Toolset – Hiding Innate MBT

Complexity

Since testers don’t want to deal directly with models or test

generation algorithms, we have abstracted the algorithms out in

our web GUI

TEMA web GUI is testers’ interface with the test server, used for

designing and managing test configurations, running and tracking

actual tests, and managing test model packages

This boils down to allowing testers to just choose what they want to

test, what physical device they want to run their tests on, etc.

Organizational impact:

Need for test design has diminished, only test configurations (that may

involve use cases) have to be created

Modeling is imperative

High-level models can be reused, but SUT-specific refinements

must be created case by case for each product in the product

family, for instance

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

TEMA Tool Architecture

SUT 1

SUT N

Model

Designer

WWW GUI

Test

Configurer

Test Engine

Model

Composer

Adapter
Connectivity

Component

Model Utilities

Video

Recorder
Debug Tools

Test

Configuration

Configured

Model

Test Model

Test Log

Test Run

Footage

Test Execution

Script

Test

Designer

Test

Debugger

Test

Modeler

Test

Engineer

Chief

Tester

Keyword Execution

Test Generation

Test Modeling

Test Design

Test Debugging

Test

Controller

Diagram symbols

Tool Artifact
Data

Control Uses

Model Library

Refinement

Machines

Action

Machines

Data

Tables

Localization

Tables

Test Suite Maintenance

A major problem with conventional test automation, especially in

the GUI context, is the maintenance of the test suites

 In the worst case, you have to modify each test in your suite

whenever something changes in the SUT (System Under Test)

 Using models, test suites are generated automatically, and you

only have to change your model

 Or few of the component models

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Keywords and Action Words

Action words describe the user’s actions at a high level of

abstraction

Send an SMS, answer a call, add a new contact etc.

Used in high-level models (action machines)

An action word is translated to a sequence of keywords

(keystrokes) for menu navigation, text inputting etc.

Some action words can have multiple keyword sequences

implementing them

Keywords are used in low-level models (refinement machines)

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

To achieve a good separation of concerns, we use action words

and keywords in separate models at different levels of abstraction

Action machines containing action words are composed with

refinement machines containing keywords

The resulting composite model is input to the tools executing the

model i.e., generating the test cases

 To avoid state space explosion, this has been implemented using

an on-the-fly algorithm

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Example Test Models

Symbian Camera application, action machine

Illustration: Antti Kervinen/TUT

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Symbian Camera application, refinement machine

Illustration: Antti Kervinen/TUT

Case: Symbian (TEMA Starting Point)

Built-in applications in Symbian smartphones, such as Gallery, Music Player,
Flash Player, Notes, Voice Recorder, Contacts and Messaging

Keyword execution using proprietary and commercial test automation tools
Optical character recognition was used for verifications, which caused some reliability and

maintenance issues

21 defects of different severities and priorities were found
Some of these defects existed in more than one smartphone model

The most severe of the defects caused the phone to hang with “System error” message on the
display

About two thirds of the defects were discovered while modeling (reverse engineering), and the
remaining third by execution (dynamic testing)

Most of the defects had already been previously found in traditional testing (both manual and
automatic test execution), but they had not been fixed for some reason

However, there were also some that were totally new

Some of the defects were related to concurrency issues: performing some multimedia-related
functionality in one application and then switching to another application caused unexpected
behavior in some circumstances

In addition to defects found in applications, some were found in test automation tools, which was
considered rather surprising, as these tools were quite mature

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Case Symbian Messaging and Camera

Testing (Nokia E7 & N8)

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Project Starting Point

Implemented by Mr. Rupesh Dev as his Master’s Thesis work

Goal: to show benefits of model-based testing over existing

keyword-based automation practices

Practical limitations:

Access the SUTs using TDriver (Testability Driver)

 http://wiki.meego.com/Quality/QA-tools/TDriver

 There were previous experiences on using TEMA with TDriver

only on Linux-based SUTs

WLAN connection preferred over Bluetooth or USB cables

 Reliable connection, multiple phones, greater distance

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Action Machine for the Sender

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Refinement Machine for the Sender

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Lessons Learned

The entire test run performed were divided in three different

combinations

 The first combination included only testing of camera based

actions

 The second combination included only messaging related tasks

 In the third one both combinations were tested jointly

Successful execution of a single model to multiple SUTs at the

same time

 In other words, we were able to execute one or more use cases

on two different phones simultaneously

Camera based test run automated the actions like image capturing

and video recording in a loop

 The test run successfully captured 1000 still images and around

800 videos in three hours

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Similarly, messaging related test run automated the text message

sending procedure

 One of the SUT composed the text message, and sent to the

other SUT

 The other SUT checked message and sent back the received

confirmation

Multi-phone MBT really works

Suggestions for improving TEMA toolset in the future

 Model management should be improved in TEMA Model Designer

 Easier installation

 Better documentation needed

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Conclusions

Model-based GUI testing of smartphone applications is starting to

be an attractive option compared to existing keyword-based tools

where test cases are designed manually

An online tool enables robustness testing that can explore the

model and gain a lot coverage

Once the adaptation and connectivity issues are solved, the

problem is in creating effective models that are easy to maintain

TEMA is an academic prototype, but has many features targeted

towards industrial-size problems

 Previous case studies have showed good performance regarding

scalability (huge models)

Rupesh’s thesis available at

 http://urn.fi/URN:NBN:fi:tty-2011062014725

 Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Example of Another Type of Adaption:

Keyword Execution with a Robot

Solution for the automated

testing of touch display

devices

Simulates real human user

interaction with SUT

The applications are tested in

actual devices

Different sets of robot fingers for

device actuation

Visual verification of the results

with a camera and OCV

(Optical Character Verification)

Easy integration with TEMA

Toolset

For more information, visit

http://www.optofidelity.com

Experiences from model-based GUI testing in smartphone camera and messaging development, Dev&Katara

Acknowledgements for financiers of MBT research at TUT:

ATAC ITEA2 project (2011-2014): Tekes

MBT-MOSE project (2008-2010): Tekes, Nokia, Ixonos, Symbio, Cybercom Plenware, F-Secure, Qentinel, Prove Expertise

AMOEBA-TESTING project (2008-2010): Academy of Finland (grant #121012))

