ETH i ©

Chair of Software Engineering

Multirequirements

Bertrand Meyer

ETH Zurich
NMTMO
Eiffel Software

SECR, Moscow, 2 November 2011

© Bertrand Meyer, 2011

About these slides ©

This prinfout is provided for the private convenience of
SECR 2011 participants having attended my keynote. The
keynote was centered around a live demo, obviously not
included here.

The slides are not intended for use by, and would make
little sense to, people not having attended the talk and the
demo.

SEL at ITMO

Software Engineering Laboratory |
INa6opatopus TTporpammHon UHxeHepuun

Co3paHo B uroHe 2011
Eweé ocTaroTca oTKpbITEIE NO3ULUM!
> AcnupaHTbl U KaHayaaTte: (Ha NoNHOM cTaBke)

> BpemeHHb1e rpaHThI (“sabbaticals”) ana
uccneposarteneun, 2 oo 6 mecaues

What this is about

O]

1. A reasoned look at the role of requirements

2. An infroduction to object-oriented analysis

3. A reminder on basic laws of software engineering
4. A reminder on the importance of contracts

5. A primer on seamless development

6. The integration of these ideas into the concept of
multirequirements

9
Upfr'on'r

Requiremen’rs

Individual interactions over processes and tools?

Manifesto for Agil

We are uncovering
software by doing
Through this wor
Individuals and intet
Working software o
Customer collabor
Responding to ¢

That is, while the
the right, we value

Ariane 5, 1996 ©

37 seconds into flight, exception in Ada program not
processed; mission aborted

Exception was caused by an incorrect conversion: a 64-
bit real value was incorrectly translated into a 16-bit
integer

Reused program element was correct - for Ariane 4!

See: Jean-Marc Jézéquel and Bertrand Meyer
Design by Contract: The Lessons of Ariane
TEEE Computer, January 1997

While the Mars Climate Orbiter was lost ©

"The peer review ... indicates that one team used English units
(e.q., inches, feet and pounds) while the other used metric
units... This information was critical to the maneuvers to place
the spacecraft in the proper Mars orbit. "

Mars Polar Lander

* Near-simu
tracking wi Mars.
Orbiter or MGS
during approach

/ # =

Landed Operatio
+ 76° § Latitude,

Launch
« Delta 7425

*Launch 1/3/%9

576 kg Launch Mass

) . ©
Software engineering has laws

Boehm, McConnell, Putnam, Capers Jones...

Cost

Nominal cost & time

Time

25%

: : 0
Revolutionary ideas?

There have only been a few game-changing ideas in the
history of software engineering:

> Structured programming
> Object technology
> ?2?? [CMM | agile | empirical SE] ?2??

For every complex problem there is an
answer that is clear, simple, and wrong.

H.L. Mencken

10

_ o)
Statements about requirements: Boehm

[Source: Boehm 81]

/

Relative cost to correct a defect
70

60

50

40

30

20

10
0 ——_—_:- t - t - t

Requirements Design Code Development Acceptance Operation
Testing Testing

11

: o)
Use cases and user stories...

... are not a proper tool for quality requirements

12

User stories

©

X 0 f (x) 0
1 1
2 4
— —
3 9
4 16

13

Results of using use cases as requirements

©

14

_ 0
Requirements change!

... but so will code, designs, documentation, and all other
products of the software lifecyclel

What this means is not that we should forgo requirements,
(even "Big Upfront Requirements"”) but that requirements
are a software product:

> Subject to change process
> Subject to quality assurance
» Under configuration management

15

What use cases and user stories are good for

They are ways to validate the user requirements

Use cases are to requirements (specifications) what tests
are to programs

The task of requirements is to abstract from user stories

Object technology

©

Ask not first what the system does:

Ask what it does it to!

17

What is object-oriented analysis?

©

>

YV V V VYV

Classes around object types (not just physical objects
but also important concepts of the application domain)

Abstract Data Types approach
Deferred classes and features
Inter-component relations: “client” and inheritance

Inheritance — single, multiple and repeated for
classification.

Contracts to capture the semantics of systems:
properties other than structural.

Libraries of reusable classes

18

15 quality goals for requirements

©

(N O N

= Justified * Interfaced
= Correct = Readable
= Complete * Modifiable

= Consistent = Verifiable

= Unambiguous * Prioritized*

* Feasibl
casible * Endorsed

= Abstract
.

t Delimited /

[Marked attributes are part of IEEE 830

]

19

Requirement styles

©

ﬂ . "Structured English” \

Informal but following some organization rules
For guidance: use IEEE 830
2. Formal

Based on mathematical formalism
Subject to proofs and formal manipulation

3. 6raphical

e.g. UML /

20

10

i : ©
Multirequirements

Can we combine all three?

The basic problem will still be traceability

/1. "Structured English” \
Informal but following some organization rules
For guidance: use IEEE 830
2. Formal

Based on mathematical formalism
Subject to proofs and formal manipulation
3. Graphical

e.g. UML /

21

0]
Technology

EiffelStudio
Diagram Tool
EIS (Eiffel Information System):

> Outgoing
> Incoming

22

11

: : _ O
Related idea: Literate Programming

11. Generating the primes. The remaining task
/is to fill table p with the correct mumbers. Let us dm
Knu""h's pr\oposal: this by generating its entries one at a time: Assuming

that we have computed all primes that are j or less, we
will advance j to the next suitable value, and continue
> InTer‘Sper‘se pr‘ogr‘am TexT doing this until the table is completely full.

The program includes a provision to initialize the

& na‘l‘u r‘al Ianguage variables in certain data structures that will be intro-

duced later.

N (Fill table p with the first m prime numbers 11) =
> RCCO r‘d The hISTOFY Of a (Initialize the data structures 16);
while k < m do

pr'Ogl"Gm developmenT begin (Increase j until it is the next prime

nunber 14},

Led to the development of TEX \ bkt gl = /

This code is used in section 3.

Limitations:
> Top-down development, not O-O
> Documentation contains program, not other way around
> Tied to the personality of its inventor
> No support for change

23

Related idea: single-product principle in Eiffel

* Single-Model Principle P

All the information
about a software system
_ should be in the software text J

Supported in EiffelStudio by Diagram Tool, multiple views of
a class (contract, interface, inheritance...) & other techniques

24

12

Opposite idea: Model-Driven Development

©

Separate model from program
In principle:

> Program generated automatically
In reality:

» What about debugging?

> What about change?

25

— . . ©
Description and implementation

1200m -l

—ey

!i"“I""ll"‘“llllm-...... .

: ,....m|l||||||"“

[A drawing of a bridge]

13

. : : O
Description-lmplementation Porosity

©CECI N’EST PAS UNE PIPE Y
Magaiiey

0]
A program text

private static boolean endsWith(String str, String suffix,
boolean ignoreCase) {

if (str == null || suffix == null) {
return (str == null && suffix == null);
}
if (suffix.length() > str.length()) {
return false;
}
int strOffset = str.length() - suffix.length();
return str.regionMatches(ignoreCase, strOffset);

28

14

©

A prograre=text specification (VDM)

AccNum = token;
CustNum = token;
Balance = int;
Overdraft = nat;
AccData :: owner : CustNum
balance : Balance
state Bank of
accountMap : map AccNum to AccData
overdraftMap : map CustNum to Overdraft
inv mk_Bank(accountMap,overdraftMap) ==
for all ain set rng accountMap & a.owner in set
dom overdraftMap and
a.balance >= -overdraftMap(a.owner)

Seamless development as practiced in Eiffel ©

Example classes:

|
Analysis

PLANE, ACCOUNT,
TRANSACTION..

> Single notation, tools, Design AT D
concepts, principles
» Continuous, incremental Implemen- HASH_TABLE..

development tation
> Keep model, implementation
and documentation consistent
> Reversibility: go back and
forth

TEST_DRIVER..

TABLE..

30

15

The cluster model and risk minimization ©

Cluster
7 Cluster

31

O]
IEEE standard

IEEE Std 830-1998
(Revision of
IEEE Std 830-1993)

|IEEE Std 830-1998

IEEE Recommended Practice for
Software Requirements
Specifications

|IEEE Computer Society

Sponsored by the
Software Engineering Standards Committee

20 October 1998 8H94654

32

16

Recommended structure

©

Table of Contents
1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes
Index

33

Eiffel Information System

O]

Ensure fraceability between Eiffel software text and any
other document (Word, PDF, ...) with a notion of hyperlink

Two directions:
> Outgoing
> Incoming

34

17

: 0
Outgoing

EIS: "name=Project Requirement",
"src=$(PROJ)/docs/requirements.pdf", "protocol=PDF",
"nameddest=4.1", "tag=requirement"

I ® cow_rizent A [Tocatien Ov
® nanvAL @ TINE ~Obtaining & DATE fros « DA $ OISE_DOC_WWID)/ 195848 fc-1 o941, . BiffalTime J
@ T @TINE TINE $ (ISE_DOC_KEF)S (i que_id) Q

@ TINE CONSTANT:
@ TIME_DURATION
® TINE mEASVREND
@ TIur st

@ TINE_VTILITY
@ TINE_VALIDITY.
@ TINE VAL

5 i fEalTing

- |

35

Multirequirements

Integrate many views of requirements:
> Textual (English)
> Graphical (UML, BON)
> Precise (object-oriented text, in Eiffel)
> Rigorous (contracts)

Make sure all views are closely interconnected
Ensure fraceability

36

18

O]
Technology

Eiffel language: analysis, design, implementation,
maintenance

Design by Contract
EiffelStudio 6.8

> Diagram tool

> Eiffel Information System

37

0
Teaching these ideas

At ETH: since 2003, beginning in the first year
Textbook: "Touch of Class”, Springer

TOUCH OF CLASS ouvne i e

Learning to Program Well
with Objects and Contracts

Y4nMca NporpaMmmMupoBaTh XOpoLwio
C 06BbeKTaMK U KOHTpaKTaMKu

[
1
%

38

19

: : _ O
Multirequirements: the key ideas

(Seamless development |

[Muh‘iple views (textual, formal, gr‘aphical)]

[Consistency and traceability |

(Object-oriented |

[Design by Contract as the formal method |

Eiffel contracts as the formal notation |

[BON or UML as the graphical no‘raﬁon]

[An IDE (here EiffelStudio) as requirements environment |

39

0]
For more

se.ethz.ch

www.eiffel.com

bertrandmeyer.com (blog)

40

20

