
1

Chair of Software Engineering

Bertrand Meyer

ETH Zurich
ИТМО

Eiffel Software

SECR, Moscow, 2 November 2011

© Bertrand Meyer, 2011

Copy of slides. For the
personal use of course
participants only.

Chair of Software Engineering

Multirequirements

About these slides

This printout is provided for the private convenience of
SECR 2011 participants having attended my keynote. The
keynote was centered around a live demo, obviously not
included here.

The slides are not intended for use by, and would make
little sense to, people not having attended the talk and the
demo.

2

2

SEL at ITMO

Software Engineering Laboratory |
Лаборатория Программной Инженерии

Создано в июне 2011

Ещё остаются открытые позиции!

 Аспиранты и Кандидаты (на полной ставке)

 Временные гранты (“sabbaticals”) для
исследователей, 2 до 6 месяцев

3

What this is about

1. A reasoned look at the role of requirements

2. An introduction to object-oriented analysis

3. A reminder on basic laws of software engineering

4. A reminder on the importance of contracts

5. A primer on seamless development

6. The integration of these ideas into the concept of
multirequirements

4

3

5

ig
Upfront

Requirements

6

Individual interactions over processes and tools?

4

7

Ariane 5, 1996

37 seconds into flight, exception in Ada program not
processed; mission aborted

Exception was caused by an incorrect conversion: a 64-
bit real value was incorrectly translated into a 16-bit
integer

Reused program element was correct – for Ariane 4!

See: Jean-Marc Jézéquel and Bertrand Meyer

Design by Contract: The Lessons of Ariane
IEEE Computer, January 1997

88

While the Mars Climate Orbiter was lost

“The peer review … indicates that one team used English units
(e.g., inches, feet and pounds) while the other used metric
units… This information was critical to the maneuvers to place
the spacecraft in the proper Mars orbit. “

5

Software engineering has laws

Boehm, McConnell, Putnam, Capers Jones...

9

Nominal cost & time

Time

Cost

25%

Revolutionary ideas?

There have only been a few game-changing ideas in the
history of software engineering:

 Structured programming
 Object technology
 ??? [CMM | agile | empirical SE] ???

10

For every complex problem there is an
answer that is clear, simple, and wrong.

H.L. Mencken

6

11

Statements about requirements: Boehm

Source: Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981

0

10

20

30

40

50

60

70

Requirements Design Code Development
Testing

Acceptance
Testing

Operation

Relative cost to correct a defect

Source: Boehm 81

Use cases and user stories...

... are not a proper tool for quality requirements

12

7

User stories

X f (x)

13

0 0

1 1

2 4

3 9

4 16

... ...

Results of using use cases as requirements

14

8

Requirements change!

... but so will code, designs, documentation, and all other
products of the software lifecycle!

What this means is not that we should forgo requirements,
(even “Big Upfront Requirements”) but that requirements
are a software product:

 Subject to change process
 Subject to quality assurance
 Under configuration management

15

What use cases and user stories are good for

They are ways to validate the user requirements

Use cases are to requirements (specifications) what tests
are to programs

The task of requirements is to abstract from user stories

16

9

Object technology

17

Ask not first what the system does:

Ask what it does it to!

18

What is object-oriented analysis?

 Classes around object types (not just physical objects
but also important concepts of the application domain)

 Abstract Data Types approach
 Deferred classes and features
 Inter-component relations: “client” and inheritance
 Inheritance — single, multiple and repeated for

classification.
 Contracts to capture the semantics of systems:

properties other than structural.
 Libraries of reusable classes

10

19

15 quality goals for requirements

 Justified

 Correct

 Complete

 Consistent

 Unambiguous

 Feasible

 Abstract

 Delimited

 Interfaced

 Readable

 Modifiable

 Verifiable

 Prioritized*

 Endorsed

 Traceable

Marked attributes are part of IEEE 830

Requirement styles

20

1. “Structured English”
Informal but following some organization rules
For guidance: use IEEE 830

2. Formal
Based on mathematical formalism
Subject to proofs and formal manipulation

3. Graphical
e.g. UML

11

Multirequirements

Can we combine all three?

21

The basic problem will still be traceability

1. “Structured English”
Informal but following some organization rules
For guidance: use IEEE 830

2. Formal
Based on mathematical formalism
Subject to proofs and formal manipulation

3. Graphical
e.g. UML

Technology

EiffelStudio

Diagram Tool

EIS (Eiffel Information System):
 Outgoing
 Incoming

22

12

Related idea: Literate Programming

Knuth’s proposal:
 Intersperse program text

& natural language
 Record the history of a

program development
Led to the development of TEX

Limitations:
 Top-down development, not O-O
 Documentation contains program, not other way around
 Tied to the personality of its inventor
 No support for change

23

Related idea: single-product principle in Eiffel

24

Supported in EiffelStudio by Diagram Tool, multiple views of
a class (contract, interface, inheritance…) & other techniques

Single-Model Principle

All the information
about a software system

should be in the software text

13

Opposite idea: Model-Driven Development

Separate model from program
In principle:

 Program generated automatically
In reality:

 What about debugging?
 What about change?

25

Description and implementation

A bridge

A drawing of a bridge

14

Description-Implementation Porosity

A program text

private static boolean endsWith(String str, String suffix,
boolean ignoreCase) {

if (str == null || suffix == null) {
return (str == null && suffix == null);

}
if (suffix.length() > str.length()) {

return false;
}
int strOffset = str.length() - suffix.length();
return str.regionMatches(ignoreCase, strOffset);

}

28

15

A program text

AccNum = token;
CustNum = token;
Balance = int;
Overdraft = nat;
AccData :: owner : CustNum

balance : Balance
state Bank of

accountMap : map AccNum to AccData
overdraftMap : map CustNum to Overdraft

inv mk_Bank(accountMap,overdraftMap) ==
for all a in set rng accountMap & a.owner in set

dom overdraftMap and
a.balance >= -overdraftMap(a.owner)

specification (VDM)

30

Seamless development as practiced in Eiffel

 Single notation, tools,
concepts, principles

 Continuous, incremental
development

 Keep model, implementation
and documentation consistent

 Reversibility: go back and
forth

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE,
COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

16

31

The cluster model and risk minimization

Cluster
1 Cluster

2
A
D

I

V&V

G

A
D

I

V&V

G

A
D

I

V&V

G

A
D

I

V&V

G

IEEE standard

32

17

Recommended structure

33

Eiffel Information System

Ensure traceability between Eiffel software text and any
other document (Word, PDF, …) with a notion of hyperlink
Two directions:

 Outgoing
 Incoming

34

18

Outgoing

EIS: "name=Project Requirement",
"src=$(PROJ)/docs/requirements.pdf", "protocol=PDF",
"nameddest=4.1", "tag=requirement"

35

Multirequirements

Integrate many views of requirements:
 Textual (English)
 Graphical (UML, BON)
 Precise (object-oriented text, in Eiffel)
 Rigorous (contracts)

Make sure all views are closely interconnected
Ensure traceability

36

19

Technology

Eiffel language: analysis, design, implementation,
maintenance
Design by Contract
EiffelStudio 6.8

 Diagram tool
 Eiffel Information System

37

Teaching these ideas

At ETH: since 2003, beginning in the first year
Textbook: “Touch of Class”, Springer

38

20

Multirequirements: the key ideas

39

Seamless development

Object-oriented

Design by Contract as the formal method

Consistency and traceability

Multiple views (textual, formal, graphical)

Eiffel contracts as the formal notation

BON or UML as the graphical notation

An IDE (here EiffelStudio) as requirements environment

For more

se.ethz.ch

www.eiffel.com

bertrandmeyer.com (blog)

40

